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Abstract: Generating sodium enola~ in the presence of TMEDA followed by inverse addition to chkm3formate 
estms leads cleanly to the O--acylated materials and provides a practical means of preparing such derivatives. In the 
absence of TMEDA mixtmes of O-- and C--acylated materials are obtained. 

Enol carbonates have general utility as polymer precursors I and have also been shown to undergo aldol type 

condensation with aldehydes in the presence of Pd(H) and Sn(II). 2 Enol carbonates may be prepared readily by 

estefificafion of enol chioroformates with the requisite alccdtoL However, attempts to generate the requisite enol 

chloroformate precursors by selective O-acylation of enolates (prepared using a wide range bases including 

sodium hydride, sodamide, lithium 2,2,6,6-tetmn~thylpiperidide, 3 and HMPA radical anion 4) with phosgene 

have met with failure except when bis(keto)mercurials are employed.5 These latter reagents efficiently provide 

enol chiomformates suitable for further elaboration, but the process presents toxicity and disposal problems. 

The alternative pathway to enol carbonate esters involves selective O--acylation of enoiates with the xequisite 

chioroformate ester (Figure 1) but again the preferred course of reaction is C-acylation. 6 
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Figure 1 
Improved ratios of O-  versus C-nucleophilic attack of ¢nolates may be obtained with increasing ionic nature 

of the enolate species. Thus the increased ionicity of potassium enolates favours O-attack; 7 whereas lithium and 

sodium enolates strongly favour C--attack. InduslAal patents have described specific sets of conditions which 

permit selective O-acylation of the potassium enolate of acetone generated using potassium hydride? Factors 

other than the nature of the electmphile and counterion which affect the ratio of O-  to C-  attack of enolates 

include temperature, stoichiometry of the reactants and polarity of the reaction medium. 60lofson has addressed 

the problem of generating enol carbonates and recommends the use of fluorocarbonates for O-acylating 
aldehydes 9 and ketones 10 and has also shown that ct,[~-unsaturated carbonyl compounds may be O-acylated 
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when the enolate is generated using potassium t-butoxide.lx Enol carbonates have also been obtained by 
electrochemical generation of enolates from ( x ~  in the presence of methyl chloroformate. 12 One 

means of circumventing the difficulties presented by achieving selective O--acylation of enolates is provided by 

the observation that enol esters may be prepared by the catalysed additions of cad>oxylic acids to alkynes. 13 

Nevertheless, selective O-acylafion of enolates with chk~roformate esters remains an atuactive proposition if a 

reliable and operationally ~mple procedure can be developed.t4 

This communication presents observations on the specific effect of  TMEDA upon the ratio of C-  versus O-  

acylation of sodium enolates of a range of ketones. Although intractable mixtures were obtained with a range of 

co ,~on ly  used dipolar aprotic additives, generation of sodium enolates in ethereal solvents in the presence of 

TMEDA led solely to the observation of the desired enol carbonates when the enolate species were quenched by 

rapid inverse ~ldition to a solution of the chiorof~nr, ate ester at 0oC (Scheme). 
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Reagents and c o . r i o t :  (i). Method A: Nail. TMEDA. THF. reflux; M d h M  B: NaN(SiM¢3)2. 
TMEDA. THF. -78°C 

(il), Inverse addition of enolate solution to R40(CO)CI, THF, 0 ° 

Scheme 

The enolates derived from saturated ketones were readily generated using sodium hydride (Method A), but 
enolates derived from aryl and a,[]-unsaturated ketones were most efficiently generated using sodium 

hexamethyldisilazide at low temperature (Method B). 15 In no instance could the corresponding C-ncylated 

materials be detected by GC.-MS. and NMR. analysis of the crude mixtures, making purification of the enol 

carbonates operationally simple. After standard quenching and work-up, the pure materials were readily 

obtained by rapid filtration through a plug of silica followed by reduced pressure distillation, is,17 An impurity 

sometimes detected when phenyl chloroformate was used as the quench was diphenyl carbonate but this could 

be readily separated from the desired materials by reduced l~mtsum distiliatio~ 

In the case of diethyl ketone, a single geometric isomer was obtained, as evidenced by G.C.-M.S. analysis 

and N.M.R. analysis of the crude mixture (Table, entry a) and n.O.e, difference experiments on the purified 

material indicated this to be the E-isomer (2a). Cyclohexanone (Table, entry c) and acetophenone (Table, 

entry e) likewise cleanly furnished the enol carbonates, as did cyclic and acyclic unsaturated ketones (Table, 

entries f, g). In the latter case, the enol carbonate (2g) obtained was the product of quenching the kinetic 

enolate of cyclohex-2--enone. The procedure is particularly well suited to the preparation of menthyl 

isopropenyl carbonate (2d), the subject of a series of patents and the initial impetus for this study. 8 

In conclusion, we have been able to demonstrate that the simple expedients of addition of TMEDA to the 

reaction medium during enolate generation and quenching by rapid inverse addition of this enolate to a solution 

of the chloroformate ester at 0°C permits selective O--acylation of sodium enolates of a range of representative 

ketones. The procedure is operationally simple and provides a general and ready access to enol carbonates. 
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R 1 R 2 R 3 R ( Method 15 Yield (%)le 

Et -  M e -  H -  Ph-  A 43 

Me2CH- Me- Me- Ph- A 85 

-(CH2) 5- H- Ph- A 48 

Me- H- H- (-)--menthyl A 79 

Ph- H -  H -  M e -  B 80 

CH2--CH- H-  H-  Ph- B 3017 

-CH--CH(CH2) 2- H-  Me- B 3417 

Table 
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